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1. Introduction

The first successful microscopic theory of superconductivity, BCS theory [1], was developed

over fifty years ago and correctly describes the superconducting phenomenology of a large

number of metals and alloys [2]. The essence of superconductivity is the spontaneous

breaking at low temperatures of a U(1) symmetry due to a charged condensate. In BCS

theory, the condensate is a Cooper pair of electrons, bound together by lattice vibrations,

or phonons.

It has been appreciated for some time that materials of significant theoretical and

practical interest, such as the heavy fermion compounds [3, 4] or the high Tc cuprates [5],

require new theoretical input. For these materials, neither the pairing mechanism, leading

to the charged condensate, nor the properties of the superconducting state itself are those

of BCS theory. Furthermore, there are indications that the relevant new physics is strongly

coupled, requiring a departure from the quasiparticle paradigm of Fermi liquid theory [3, 5].

Our hope is that a solvable model of a strongly coupled system undergoing a supercon-

ducting phase transition might help the development of new theories of superconductivity.

It has recently been shown that the AdS/CFT correspondence [6] can indeed provide mod-

els of strongly interacting superconductors in which calculations can be performed from

first principles [7 – 10]. These recent works are part of a wider program of applying the

AdS/CFT correspondence to condensed matter systems [11 – 16]. The philosophy is that

even if the underlying microscopic descriptions of theories with AdS duals are likely quite

different to those arising in materials of experimental interest, aspects of the strongly cou-

pled dynamics and kinematics may be universal. Kinematically speaking, theories with

AdS duals are quantum critical [17]. The superconductors described to date within the

AdS/CFT framework are quantum critical systems that undergo a superconducting phase

transition as a function of temperature over chemical potential.

In the recent work [9], the electrical conductivity of a holographic (i.e. AdS/CFT)

superconductor was computed as a function of frequency. A delta function at the origin,

ω = 0, due to the Goldstone boson of the broken U(1) symmetry, was followed by a gap
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2∆ in which the dissipative conductivity vanished at zero temperature. At small but finite

temperature the conductivity in the gap was suppressed by e−∆/T . Beyond the gap, a

finite spectral density was observed, exhibiting or not a coherence peak depending on the

details of the system. What was remarkable about these results was that despite coming

from a strongly coupled quantum critical theory, they are exactly the qualitative features

of conductivity in the superconducting phase that one obtains from weakly coupled BCS

theory [2]. The main difference, and apparently only indication of an underlying strong

coupling dynamics, was that [9] found the zero temperature gap 2∆/Tc ≈ 8.4 rather than

2∆/Tc ≈ 3.5 for BCS theory.

It is of interest to find and study gravitational duals to superconductivity with qualita-

tive features that are not those of BCS theory, but rather of nonconventional superconduc-

tors such as the heavy fermions or the cuprates. In this paper we will study the electrical

conductivity of a holographic superconductor recently proposed by Gubser [8]. We show

that this model exhibits two such nonconventional features: a ‘pseudogap’ rather than a

gap at zero temperature and spontaneous breaking of time reversal invariance.

By ‘pseudogap’ we do not mean the exotic and controversial region in the normal phase

of cuprate superconductors [5]. Rather, we will use the term to denote a well-defined gap in

the dissipative conductivity at low frequencies in which the conductivity is not identically

zero. In nonconventional superconductors, this pseudogap is due to the fact that the Cooper

pairs are not bound states with zero angular momentum (l = 0) but rather so-called p-wave

(l = 1) or d-wave (l = 2 spin singlet) states. The gap above the Fermi surface in these

superconductors vanishes at certain specific directions in momentum space and therefore

one finds (a reduced number of) excitations with arbitrarily low energy [5, 4].

Spontaneous breaking of time reversal invariance has recently been observed, for in-

stance, in the YBCO high Tc superconductor [18 – 22]. The breaking is thought to occur

because the condensing Cooper pairs are not only not s-waves but in fact a complex com-

bination of d-waves: dx2−y2 + idxy. The simple fact that this is a supposition of T invariant

states with differing phases is sufficient to break T invariance. Recall that T is an anti-

linear operator. One immediate consequence of breaking time reversal is that it is possible

for these systems to have a Hall conductivity even in the absence of an external magnetic

field [23, 24]. We will review this fact below.

The layout of this paper is as follows. We will first review the Einstein-Yang-Mills

system that was shown in [10] to be a holographic dual to a theory with a superconducting

phase transition that spontaneously breaks T invariance. We will compute the electric

conductivity and the spectral density in the superconducting phase and exhibit a pseudogap

and a Hall conductivity.

Note: as this paper was nearing completion, the preprint [25] was posted to the arxiv,

with some overlap with this work. Furthermore, it was pointed out in [25] that the su-

perconducting phase we will be studying is in fact unstable near Tc to the breaking of

rotational invariance. We have extended and confirmed this stability analysis in section 4

below. The instability is in a mode orthogonal to the modes we study. Therefore our

results for the conductivity should be interesting as a strong coupling computation of an
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isotropic pseudogapped superconducting phase with both Hall and direct conductivities

(with no external magnetic field).

2. The Einstein-Yang-Mills background

The gravitational geometry dual to our finite temperature superconductor will be the planar

Schwarzschild-AdS black hole in 3+1 dimensions

ds2 =
r2

L2

(

− h(r)dt2 + 2dzdz̄
)

+
L2

r2h(r)
dr2 , (2.1)

where h(r) = 1 − r3

0

r3 and we have introduced the complex coordinates

z =
x + iy√

2
. (2.2)

The scale L is the AdS radius and r0 gives the location of the black hole horizon. The

geometry (2.1) is a solution of the vacuum Einstein equations with a negative cosmological

constant.

On this background we will study an SU(2) gauge theory. This was suggested to be

an interesting dual for a superconductor in [10], and we shall review the dynamics shortly.

The full Einstein-Yang-Mills theory has the action

S =

∫

d4x
√−g

[

1

2κ2
4

(

R +
6

L2

)

− 1

4g2
F a

µνF aµν

]

. (2.3)

Following [9, 10], we will be working in the probe limit, in which the SU(2) fields are small

and do not backreact on the metric.1 Conformal invariance of the Yang-Mills action means

that by rescaling the metric, keeping the Yang-Mills coupling g fixed, we can always make

the probe approximation consistently. Specifically, we take Lg ≫ κ4. In fact, by rescaling

all the fields we can set L = 1, which we will proceed to do. Let us now set up some

notation.

The three generators τa of the SU(2) algebra satisfy [τ b, τ c] = τafabc. In the stan-

dard basis we have fabc = ǫabc, with ǫ123 = 1. It will be useful for us to work with the

combinations

τ± =
τ1 ± iτ2

√
2

, (2.4)

as well as τ3. The field strength is

F a
µν = ∂µAa

ν − ∂νAa
µ + fabcAb

µAc
ν . (2.5)

The equations of motion are

1√−g
∂µ(

√−gF aµν) + fabcAb
µF cµν = 0 . (2.6)

1The probe limit is in fact necessary to obtain a finite DC (ω = 0) conductivity even in the normal

phase. A translationally invariant system with a finite charge density will have an infinite DC conductivity

unless the momentum can leak somewhere. In the probe limit, momentum is leaked to the metric or ‘glue’

sector. See for instance [26].
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Following [10] we will identify the U(1) subgroup of SU(2) generated by τ3 to be

the electromagnetic U(1). The W-bosons A± are therefore charged fields. The insight

of [10] was to note that a sufficiently large background electric field for the U(1), at fixed

temperature, would cause the W-bosons to condense and hence trigger superconductivity.

Specifically, consider the background ansatz

A = φ(r) dtτ3 + w(r) (dzτ− + dz̄τ+) . (2.7)

An important feature of this ansatz is that whereas the original rotational invariance is

broken, the system is invariant under a combined gauge and spatial rotation

z → eiθz , τ± → e±iθτ± . (2.8)

Therefore the superconducting phase we are considering is effectively spatially isotropic.

A symmetry that is broken by the A±

z,z̄(r) fields is time reversal invariance. These gauge

potentials lead to a magnetic field in the bulk. A magnetic fields breaks time reversal, as

can be immediately seen from (for instance) the Lorentz force law.

Evaluated on this ansatz, the equations of motion become

φ′′ +
2

r
φ′ − 2w2

r4h
φ = 0 ,

w′′ +

(

2

r
+

h′

h

)

w′ +
φ2w − hw3

r4h2
= 0 . (2.9)

Under a rescaling r = r0r̄ , φ(r) = r0 φ̄(x) , w(r) = r0w̄(x), the black hole radius r0 cancels

out of the equations entirely, rendering all quantities dimensionless. This is a consequence

of the dual theory being a conformal field theory in flat space. Therefore we will set r0 = 1

in what follows. The Hawking temperature of the black hole (2.1) is

T =
3r0

4π
. (2.10)

We will restore the r0 dependence when we wish to re-express quantities in terms of the

temperature.

There are two solutions to the equations (2.9). The first is the AdS-Reissner-Nordstrom

black hole which has2

φ = ρ(1 − 1/r) , w = 0 . (2.11)

The scalar potential is required to vanish on the horizon (recall that we have set r0 = 1).

This ties the chemical potential µ to equal the charge density ρ. The second solution is a

hairy black hole. This solution needs to be found numerically. The main feature is that

w 6= 0, but still normalizable at infinity. Thus at large radius r we require for the scalar

potential

φ = µ − ρ

r
+ · · · , (2.12)

2In the following definitions we have rescaled the boundary charge density and condensate by ρ, J →

ρ/g2, J/g2, to eliminate messy factors of g. This rescaling does not affect the physical ratio 2∆/Tc.
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Figure 1: The gap as a function of temperature.

and for the charged condensate

w =
〈J〉√
2r

+ · · · . (2.13)

Here 〈J〉 is a condensate of the charged operator dual to A−
z τ− + A+

z τ+ (up to a sign).

It is a component of the global SU(2) current in the field theory. We have required that

there is no source term in field theory action for the operator J , by demanding that the

constant term in the large r expansion of w vanish. From the field theory point of view,

the presence of the 〈J〉 condensate in the absence of a source means that time reversal

symmetry is spontaneously broken.

In order to find the hairy black hole solutions, one should numerically integrate out

from the horizon. Near the horizon one writes φ = φ1(r−1)+ · · · and w = w0 + · · · . There

are two constants of integration, w0 and φ1, and therefore, upon imposing the falloff (2.13)

we are left with a one parameter family of solutions.

If we fix the charge density ρ, one finds that the hairy black holes only exist below a

critical temperature

Tc = 0.125
√

ρ . (2.14)

See figure 1. With some hindsight, see the following section, we introduce gap notation

2∆ =
√

〈J〉 . (2.15)

Note that J is an operator with mass dimension 2, appropriate for a current density in

2+1 dimensions. The natural dimensionless quantities to plot are therefore 2∆/Tc against

T/Tc. Just below the critical temperature we find

〈J〉 ≈ 104.8T 2
c (1 − T/Tc)

1/2 , (2.16)

as expected for a mean field second order transition. It is interesting to note that the zero

temperature gap is
2∆(0)

Tc
≈ 8 . (2.17)
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This is greater than the BCS value, rather close to the value found in the holographic

model of [9] and consistent with some values observed in the cuprates. Given the similarity

of this value for the gap and the one obtained in [9], it would be of interest to obtain values

for different holographic models to see to what extent it is universal.

Before moving on we should make some comments concerning the zero temperature

limit. We see in figure 1 and in the figures below that all the quantities we consider

converge nicely when we take T ≪ Tc. However, it is not straightforward to extract the

limiting results by studying (zero temperature) AdS directly. This point was noted and

discussed in [9]. Understanding how to treat holographic superconductors directly at zero

temperature is an important question for future work. Also as noted in [9], the strict zero

temperature limit does not commute with the probe approximation. The probe limit may,

however, be self consistently used to arbitrarily low temperatures. Work in going beyond

the probe approximation is underway [27].

3. Conductivity and spectral density

Two basic quantities characterising any superconductor are the frequency dependent con-

ductivity and the spectral density. These are closely related, but not identical in the

presence of a Hall conductivity. The electrical conductivity is defined through Ohm’s law

Ji = σijE
j . (3.1)

Here Ej is an external electric field and Ji the current generated. Because the supercon-

ducting phase we are studying is isotropic, we will have σxx = σyy and σxy = −σyx. In a

non-isotropic phase the distinction between the standard and Hall conductivites is not well

defined.

We will compute the conductivity directly from Ohm’s law (3.1). However, to relate

the conductivity to the spectral density, we note the standard formula from linear response

theory

σij(ω) =
−iGR

ij(ω)

ω
, (3.2)

in which the retarded Greens function is

GR
ij(ω) = −i

∫

d2xdte−iωtθ(t)〈[Ji(t), Jj(0)]〉 . (3.3)

The spectral density is defined to be twice the imaginary part of the retarded Greens func-

tion. However, in order to obtain a sensible, i.e. non-negative, spectral density one needs

the Greens function of currents that do not couple. These are obtained by diagonalising

the conductivity. The conductivity matrix has eigenvalues

σz = σxx + iσxy , σz̄ = σxx − iσxy . (3.4)

In the eigenbasis Ohm’s law becomes the decoupled equations Jz = σzEz and Jz̄ = σz̄Ez̄.

We are using the complex coordinates introduced in (2.2) above. This complexified for-

malism is similar to that used in [13]. The spectral densities associated with the decoupled

– 6 –
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currents Jz and Jz̄ are thus

χz(ω) = 2ωRe σz(ω) , χz̄(ω) = 2ωRe σz̄(ω) . (3.5)

We recall that the physical interpretation of the spectral density is that it gives us the

density of energy eigenstates at energy ω, weighted by their overlap with the electric current

operators. Therefore the spectral density is the appropriate quantity with which to probe

the pseudogap region, that will make an appearance shortly.

In order to compute linear response functions, such as the conductivity, using the

gravitational dual to the superconductor, one needs to consider linearised perturbations

of the fields about the black hole background [28]. Specifically, we are interested in the

τ3 component of the nonabelian current, j3
x,y. This will be dual to fluctuations of the

A3
x,y fields. Because of the nonlinearities in the Yang-Mills action, fluctuations in A3

x,y will

source other fields. We need to keep all the modes that are coupled at a linearised level for

consistency.

Since our background is invariant under a combined spatial and gauge rotation (2.8),

it is sufficient to consider fields that have the same charge as A3
x,y under this U(1) action.

Specifically, we see that there will be decoupled equations involving the sets of fields

{A+
r (r), A+

t (r), A3
z(r)} and {A−

r (r), A−

t (r), A3
z̄(r)} . (3.6)

All of these fields are taken to have an overall time dependence of e−iωt.

There is still some gauge freedom left, which reduces the actual degrees of freedom. In

particular, we can consider a background field gauge transformation generated by some λa

δBGAa
µ = ∂µλa + fabcAb

µλc . (3.7)

We will use this freedom to set A±
r = 0. The linearized equations for the perturbations

become

A3
z
′′

+

(

2

r
+

h′

h

)

A3
z
′
+

ω2 − hw2

r4h2
A3

z −
w(φ + ω)

r4h2
A+

t = 0 , (3.8)

A3
z̄
′′

+

(

2

r
+

h′

h

)

A3
z̄
′
+

ω2 − hw2

r4h2
A3

z̄ −
w(φ − ω)

r4h2
A−

t = 0 , (3.9)

A+
t
′′

+
2

r
A+

t
′ − w2

r4h
A+

t +
w(φ + ω)

r4h
A3

z = 0 , (3.10)

A−

t
′′

+
2

r
A−

t
′ − w2

r4h
A−

t +
w(φ − ω)

r4h
A3

z̄ = 0 , (3.11)

A+
t φ′ + h(w′A3

z − wA3
z
′
) − (φ − ω)A+

t
′
= 0 , (3.12)

A+
t φ′ + h(w′A3

z − wA3
z̄
′
) − (φ + ω)A−

t
′
= 0 . (3.13)

Two of these equations are redundant: Equations (3.10) and (3.11) can be derived by

differentiating the first order equation and substituting the other equations of motion.

Therefore, in solving these equations numerically it is sufficient to numerically inte-

grate (3.8), (3.9), (3.12) and (3.13). Despite the first-derivative equations appearing to

have singular points, they numerically integrate perfectly well.
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The equations are solved numerically by integrating out from the horizon to infinity. In

order to obtain retarded Greens functions, ingoing boundary conditions must be imposed

at the horizon [28]. This is most conveniently done by requiring the following behaviour

near the horizon r ≈ 1:

A3
z = h−iω/3a0 + · · · , (3.14)

A3
z̄ = h−iω/3b0 + · · · , (3.15)

A+
t =

a0 w0

i + ω/3
h−iω/3(r − 1) + · · · , (3.16)

A−

t = − b0 w0

i + ω/3
h−iω/3(r − 1) + · · · . (3.17)

Recall that we defined w0 above as the value of the background field w at the horizon.

Given the background, there are two free constants, a0 and b0.

Integrating the fields out to large r, we can read off the dual currents and external

electric fields. The current and charge densities are obtained from

F a
rµ =

g2〈Ja
µ〉

r2
+ · · · , (3.18)

where µ here runs over the boundary directions t, z, z̄. In this expression we have included

the Yang-Mills coupling g due to the action (2.3). This coupling determines the (constant)

conductivity of the normal, non-superconducting, state [11]

σn =
1

g2
. (3.19)

The numerical value of the normal state conductivity depends on the theory. The external

electric fields then are obtained from

F a
ti = −Ea

i + · · · . (3.20)

(A more symmetric formulation of (3.18) and (3.20) is possible in terms of the radial

variable u = 1/r.) From the previous section, we have the background equilibrium values

〈J±

z,z̄〉 = −J , 〈J3
t 〉 = ρ . (3.21)

In reading off the linearised electric response to a time varying external field we have to

face the fact that the näıve SU(2) conductivity, or the projection of it onto the τ3 direction,

is not SU(2) invariant. We are interested in the electrical conductivity of the U(1) subgroup

of SU(2) generated by τ3. Therefore, we should consider currents that result from external

sources in the τ3 direction only. In many circumstances it would be sufficient to ensure

that we have electric field Ei ≡ E3
i only. However, because the näıve rotational invariance

is broken, there is a nontrivial charge-current density Green’s function GR
it(ω). Therefore,

we need a configuration in which the background A±

t also vanishes. Here A±

t is a source

for the charge density ρ±.

If we were to simply take our equations (3.8) to (3.13) and integrate them to the

boundary, while we would never obtain electric fields E±

i , we would obtain a source A±

t .

– 8 –



J
H
E
P
0
8
(
2
0
0
8
)
0
3
5

We therefore need to do an SU(2) rotation to set this term to zero. In the bulk this means

we should allow for a gauge transformation that sets the boundary value of A±

t to zero. A

gauge transformation generated by λa(r) results in the new scalar potential

δA±

t = A±

t − iλ±(ω ∓ φ) , (3.22)

as well as the new field strengths

δF±

rt = A±

t
′ ± iλ±φ′ , (3.23)

δF 3
rz = A3

z
′ − iλ+w′ , (3.24)

δF 3
rz̄ = A3

z̄
′
+ iλ−w′ , (3.25)

δF 3
tz = iωA3

z + w(iA+
t ∓ λ+φ) . (3.26)

In the final of these expressions, only the first term contributes at the boundary r → ∞.

We wish to cancel the leading asymptotic term in A±

t with λ. After doing this, we can

obtain the conductivities

σz =
Jz

Ez
= −σn lim

r→∞

r2δF 3
rz

δF 3
tz

= σn lim
r→∞

i

ωA3
z

(

r2A3
z
′ +

J√
2(ω − µ)

A+
t

)

, (3.27)

σz̄ =
Jz̄

Ez̄
= −σn lim

r→∞

r2δF 3
rz̄

δF 3
tz̄

= σn lim
r→∞

i

ωA3
z̄

(

r2A3
z̄
′ − J√

2(ω + µ)
A−

t

)

. (3.28)

We can see that this expression has a curious pole at ω = µ. This will appear as a delta

function in the spectral density for Jz.
3 It is of interest to elucidate the physics behind

this stable resonance, but we shall not do so here.

Given σz and σz̄ we can obtain the spectral functions directly from (3.5) and the

standard and Hall conductivities by inverting (3.4) to obtain

σxx =
1

2
(σz + σz̄) , σxy =

−i

2
(σz − σz̄) . (3.29)

Our result for the spectral functions is plotted in figure 2. The standard and Hall conduc-

tivities are plotted in figure 3.

The principal qualitative features of our results are immediately seen in these plots.

Firstly, there is a strong depletion of spectral weight at small frequencies. However, even

as we take the temperature to zero, the spectral function does not become identically zero

over a finite range of low frequencies. Therefore, we will call this region the pseudogap.

The two currents, Jz and Jz̄ have pseudogaps of differing widths. We have defined 2∆ to

be the width of the narrower of the two, see the right hand plot of figure 2. Obviously

there is some ambiguity in the definition of the width. The two different gaps are likely

due to the fact that there are effectively two condensates in the ansatz (2.7). It would

be interesting to disentangle their physics by considering more general backgrounds with

more than one radial function. Allowing for gauge transformations, (2.7) can be generalised

to three independent radial functions. The only isotropic ansatz is (2.7), up to gauge

transformations.

3We thank Gubser and Pufu for convincing us that this pole is indeed physical.
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Figure 2: Spectral functions for the currents Jz and Jz̄. Each plot is in fact five curves, at temper-

atures T/Tc = .08, .11, .15, .19, .23. We see that we have effectively reached the zero temperature

limit. There is a clear pseudogap, and a delta function at ω = 0. There is also a delta function at

ω = µ.

Figure 3: Standard and Hall conductivities at low temperatures as a function of frequency. The

temperatures shown are again T/Tc = .08, .11, .15, .19, .23. The solid lines are the real part whereas

the dashed lines are the imaginary parts. A pole in the imaginary part at ω = 0 indicates that the

real part will contain a delta function at ω = 0. Similarly with the pole at ω = µ

In the standard conductivity we find a delta function in the real part at ω = 0. This

is the Goldstone boson of the spontaneously broken U(1) symmetry and is the signal of

superconductivity. We again see a pseudogap at low frequencies. Because this conductivity

is sensitive to both the χz and χz̄ spectral functions, which had gaps of differing widths,

there is a small feature in the conductivity.

We also find a nonvanishing Hall conductivity. This Hall conductivity is different to

previous appearances of Hall conductivity in AdS/CFT, e.g. [29], in that it is not due to an

external magnetic field. Rather, a Hall conductivity is possible because the superconducting

condensate broke time reversal invariance. This can be seen directly from (3.2) and (3.3).

Recalling that T is an antilinear operator, then (3.3) implies that σij(ω) = σji(ω) in a

– 10 –
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state that is T-invariant.4 Isotropy implies σxy(ω) = −σyx(ω), and therefore T-invariance

implies σxy(ω) = 0. Furthermore (recall that the conductivity is dimensionless in 2+1

dimensions) we find that the Hall conductivity attains a finite real value at ω = 0.

Now let us extract some quantitative results from our data. The superfluid dens is the

coefficient of the delta function in the real conductivity at ω = 0. By the Kramers-Kronig

relations, this is also the coefficient of the pole in the imaginary part of the conductivity

as ω → 0:

Re σxx(ω) ∼ πnsδ(ω) → Im σxx(ω) ∼ ns/ω . (3.30)

From our equations we find

for T ≪ Tc : ns ≈ Cσn∆ , (3.31)

as T → Tc : ns ≈ C ′σn(Tc − T ) , (3.32)

where the numerical coefficients are C = 0.25, C ′ = 12.2. As in [9], we can note that

a linearly vanishing superfluid density near the critical temperature results in a London

magnetic penetration depth of λL ∼ (Tc − T )−1/2, as expected from Landau-Ginzburg

theory.

We can also read off the ‘normal component’ of the DC conductivity, that is, the finite

DC conductivity due to finite temperature excitations of the normal state. In contrast to

the fully gapped model of [9], there is no exponential suppression at small temperatures.

Instead we find a quadratic dependence on temperature

nn ≡ lim
ω→0

Re σxx ≈ 0.32σn(T/Tc)
2 + · · · , (3.33)

and in the zero temperature limit the small frequency dependence is

Re σxx ≈ 0.20σn(ω/2∆)2 + · · · . (3.34)

Similarly, we can examine the DC hall effect and find

H ≡ lim
ω→0

Reσxy ≈ 0.24σn + 0.13σn(T/Tc)
2 + · · · . (3.35)

There is no superfluid component because the imaginary part has no pole. On the other

hand, because there is no Hall conductivity in the normal phase, it is clear that supercon-

ducting physics is playing an important role.

The crucial question is of course to understand the physics underlying the pseudogap

in this model. One might hope that the psuedogap is indeed a signal of the p- or d-wave

nature of the ‘Cooper pairs’. The operator that condenses is a component of a global SU(2)

current. In many cases this will be a bilinear in UV operators, including fermions. The

combination of spacetime and internal symmetries that occurs in these models to preserve

isotropy is also reminiscent of non s−wave superconductors. In order to be completely sure

that there is indeed a non s−wave condensate one should probe the system as a function

4〈[Ji(t), Jj(0)]〉 = 〈T [Ji(t), Jj(0)]T 〉∗ = 〈[Jj(0), Ji(−t)]〉 = 〈[Jj(t), Ji(0)]〉.
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of momentum ki and look for a momentum-dependent gap. We hope to address this in the

future.

Another possibility is that the pseudogap is directly due to the fact that there is a

massless excitation in the theory: the Goldstone boson.5 The electric current can decay

at arbitrarily small energy into a multi Goldstone boson state. By the optical theorem,

this process should introduce a branch cut in the current-current Greens function reaching

down to ω = 0. In fact, one might ask why such a cut didn’t show up in the conductivity

computations in [9]. At weak coupling such processes are at higher loop order and are

suppressed relative to pair production of ‘electrons’ (the quasiparticles forming the Cooper

pair). At strong coupling it is less clear. Perhaps such cuts reaching ω = 0 are suppressed

at large N in a similar manner to those resulting in hydrodynamic tails [30]. Alternatively,

perhaps breaking T invariance allows decay channels that were not possible in [9].

The presence of the Goldstone boson reminds us that in our model, as in all such

AdS/CFT systems, the U(1) ‘electromagnetic’ symmetry is not gauged in the boundary

theory. Strictly, one might then consider our model to describe a charged superfluid rather

than a superconductor. However, one can imagine ‘weakly gauging’ the global U(1) symme-

try. That is to say, coupling the theory to photons with a weak coupling and hence ignoring

all non-external photons interactions. This is analogous to what is done in the well-known

BCS theory, where the electromagnetic interaction between electrons is screened and the

effective interactions that drive superconductivity involve only phonons. Photons are also

neglected in the standard treatment of p- and d-wave supercondutors, see e.g. [33].

It is certainly of interest to look for possible embeddings of Yang-Mills theory in AdS

into string or M theory, ideally consistent with the probe approximation. A natural way

to get an SU(2) field in string theory is by using coincident D branes. In such a setup

the probe limit will be admissible at weak string coupling (large N). For instance, the

supersymmetric D3-D5 system, with N D3 branes and 2 D5 branes, admits a near horizon

description as two probe D5 branes in AdS5 × S5. The probe branes lie on an AdS4 in

AdS5 and have an SU(2) gauge field on their worldvolume, thus precisely realising our

setup. Although the remaining directions of the D5 branes form an S2 in S5, they are

stable because the mass of the slipping mode is above the Breitenlohner-Freedman bound.

The Lagrangian (2.3) can also be uplifted to eleven dimensional supergravity on

AdS4 × S7 using [31], following [32]. However, this lift gives g2L2 = κ2
4/4 (at least ac-

cording to [31]).6 This appears to be below the critical value g2L2 ≈ κ2
4 needed for a

superconducting instability to occur [10]. Therefore, this lift does not realise the physics

of interest.

4. Discussion and stability

It was shown in [25] that, at least near to the critical temperature, the isotropic super-

conducting phase is unstable to a perturbation breaking rotational invariance. This was

5We’d like to thank Dam Son for drawing this possibility to our attention.
6In fact [31] and [32] differ by a factor of 2 for g2L2. Both values are below the critical value for

superconductivity. We thank Gubser and Pufu for bringing these facts to our attention.
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Figure 4: Comparison of free energies for temperatures below Tc. The anisotropic phase is a

dashed line. It always has a lower free energy than the isotropic phase.

achieved by searching for dynamical instabilities, that is, normalisable modes that grow

exponentially in time. Their postulated endpoint of this instability is an anisotropic phase

with background ansatz

A = φ(r) dtτ3 + w(r) dxτ1 . (4.1)

This background breaks time reversal symmetry, as well as being incurably anisotropic.

The anisotropy means that it is not possible to invariantly separate the standard and Hall

conductivities. Therefore one should look for different signals of the time reversal breaking.

To confirm this instability and follow it down to lower temperatures, we have computed

the free energies of the isotropic and anisotropic phases. The two backgrounds come into

existence at the same critical temperature Tc. We have been able to study the backgrounds

down to T/Tc ≈ 0.23. Working in the grand canonical ensemble, that is, fixed chemical

potential, to compute the free energy it is sufficient to simply compare the Yang-Mills ac-

tion (2.3) evaluated on the solutions, with the same chemical potential (and not necessarily

the same charges).

The result is shown in figure 4. For each phase we have plotted the difference in free

energy compared to the phase without a condensate. We see that the anisotropic phase

appears to be favoured at all temperatures.

The mode about the isotropic black hole leading to an instability does not mix with the

modes we have been considering. Therefore the electrical response of the theory remains

well defined at the level of linear response. The phase we have studied is interesting

therefore as a model of a strongly coupled isotropic superconductor with a pseudogap and

spontaneous time reversal breaking. These are four properties (strongly coupled, isotropic,

pseudogapped and T-non-invariant) that are shared by superconductors of experimental

interest. It would of course be interesting to identify other experimental quantities that

are amenable to computation in this model.

Further on the question of instability, one should note that there are other backgrounds

than (2.7) and (4.1) that are possible, and which are natural candidates for the dominant

state. After allowing for gauge transformations it seems that the general ansatz has three

independent radial functions. This more general ansatz deserves study.
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The main results of this paper have been to exhibit a pseudogap and a Hall conductivity

in an isotropic phase of the holographic superconductor proposed in [10]. A primary

question for future work is to explain the pseudogap in this model. We noted that two

natural candidates are firstly non s−wave pairing and secondly intermediate states of

massless Goldstone bosons.

A second question is to find upliftings of the Yang-Mills model into string and M

theory. Probe D branes are a natural way to engineer nonabelian symmetries and will

furthermore be consistent with the probe limit.

Thirdly, there has been recent work on the Hall conductivity of nonconventional su-

perconductors, e.g. [33 – 37]. Some of these have been motivated by recent experiments on

Sr2RuO4, which is thought to have p-wave pairing. A qualitative difference between most

of those results and ours is that they find a vanishing Hall conductivity when the spatial

wavevector k = 0. We suspect that this difference is due to the fact that our condensate

is not rotationally invariant without also rotating the internal U(1). It would certainly

be interesting to look for applications of our results to the physics of Sr2RuO4 or other

materials.

Finally, we observed that the zero temperature gap was 2∆/Tc ≈ 8. This is very close to

the value found in the holographic superconductor studied in [9]. It would be interesting

to study more examples and see to what extent this value is universal for holographic

superconductors.
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